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Some new properties of the Lebesgue function associated with interpolation at
the Chebyshev extrema nodes are established. By estimating the degree of asym­
metry of the Lebesgue function in the interval of interest, the estimate of Ehlich and
Zeller for the norm of the corresponding interpolation operator is improved.
'c) 1984 Academic Press, Inc.

I. INTRODUCTION

Let X= {xd~=o be a given set of (m + 1) distinct points in [-1,1] and
denote by C[-1, 1] the Banach space of continuous functions on [-1, 1]
equipped with the uniform norm. To each f(x) E C[-1, 1] there corresponds
a unique interpolation polynomial Pm(X; x) of degree at most m which can
be expressed in the Lagrangian form:

m

Pm(X; x) = '\-' f(x k) Ik(X; x),
k=O

where

m

Ik(X; x) = n (x - xJ/(xk - Xi)'
i=O
i*k

In interpolation theory the behavior of the function

m

Am(X; x) = 'Y 11k(X; x)l,
k=O

(1)

(2)

usually referred to as the Lebesgue function, is of great importance since the
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operator norm of Pm(X; .) (as an operator on C[-1, 1Dequals the supnorm
of its Lebesgue function

(3)

Recently, stimulated by the proof of the Bernstein and the Erdos
conjectures concerning optimal choice of interpolation nodes [1, 5], special
interest has been devoted to the analysis of the behavior of the Lebesgue
function for specific sets of interpolation nodes. The properties of the
Lebesgue function corresponding to the set of Chebyshev roots
T= {cos[(2k + l)n/(m + 1)]}Z'=o were thoroughly investigated in [2]. It has
been also shown that the set of nodes U = {cos(kn/m)} Z'=o, coinciding with
the Chebyshev extrema, failed to be a good approximation to the optimal
interpolation set. Nevertheless, this set of nodes is of considerable interest
since as was established by Ehlich and Zeller [3] (see also McCabe and
Phillips [6 D, the norm of the corresponding interpolation operator Pn(U) is
less than the norm of the operator Pn(T) induced by interpolation at the
Chebyshev roots. Namely, the following relation holds:

1
= liPm-I(T)II- am' 0 <am <-2 '

m

m = 1,3,5"00'

m = 2, 4, 6,....
(4)

Estimate (4) appears also in Rivlin [7,8], where the author expressed
interest in "closer scrutiny of the quantities am'"

In the present work we exploit the convenient representation of the
Lebesgue function Am(U; x) obtained in [2] and by proving some new
properties of this function, establish a sharper bound for am' As a by­
product, we obtain two trigonometric identities, the proof of which is given
in the Appendix.

II. RESULTS

Let lk(U; x) == lk(x) (In the following we deal mainly with the U-set of
nodes and when no ambiguity arises the symbol U will be omitted.) be the
fundamental polynomials induced by interpolation at the set of Chebyshev
extrema U= {xk=cos(kn/m)}Z'=o' We use the standard trigonometric
transformation x = cos 0 (xk= cos Ok' Ok = kn/m) and denote by Am(U; 0) ==
Am(O) the corresponding Lebesgue function

m

Am(O) = 2.: 11k(cos 0)1·
k=O

(5)
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By introducing a new variable <p = 0 - OJ_I' <p E (0, n/m) and denoting the
restriction of the Lebesgue function A,m(O) to the subinterval Ij = (OJ_l' OJ)'
j = 1,2,..., m by A,~(O), one can use the following convenient representation
obtained in [2]:

sin(m<p) ) 2j-2 I m-l I
A,~(O) == Am(Ij , <p) = L . ( 0) - " cot(<p + Ok) .

m k=O sm qJ + k k=2j-l
(6)

From now on we deal with the even case where m = 2n. Since II P2n(U)11 =
maxO';",';,,/2n A2n(In , qJ) (see [2]), we concentrate our attention on the
analysis of the function A,2n(In, qJ) denoted further by F2n (qJ). It follows from
(6) that

. (2 ) j2n - 2 1 I_ sm nqJ ,-' _
F2n(qJ)- 2 --' (+0) cot(qJ+(}2n_l)'n k=O sm qJ k

(7)

where Ok = kn/(2n), k = 0, 1,... , 2n.
The idea of estimating the "degree of asymmetry" of this function is of

central importance in our analysis. Let A 2n(qJ)=F2n [(n/2n)-rp] -F2n(rp),
o~ qJ ~ n/(4n). The maximal value of this difference will be used as a
measure of asymmetry of the Lebesgue function. The following estimate
holds:

THEOREM I.

max A 2n(qJ)< I
n
6 tan(4

n
).

0'; ",';,,/4n n n

Proof First we rewrite (7) in the form

(8)

Now let G2n(qJ)=I:i':,:;/ [1/sin(qJ + Ok)]' It is clear that G2n [(n/2n)-qJ] =
G2n(qJ), 0 ~ qJ ~ n/(4n), and hence

A ( ) = sin(2nqJ) \ (~_!!-) _ (!!-) I = sin(2nqJ) H () (9)
2n qJ 2n Itan 4n 2 tan 2 \ - 2n n qJ .

Since
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the function Hn(qJ) is monotone decreasing. Furthermore, an easy
computation reveals

showing that Hn(qJ) is also a convex function on (0, n/4n). Thus,

(12)

and, therefore,

(13)

It remains to note that the function on the right-hand side of (13) attains
its maximal value at qJ = n/(8n). This concludes the proof of the theorem.

We proceed now to prove the following property:

THEOREM 2. The Lebesgue function A2n(In' qJ) is a concave function of qJ
on [0, n/(2n)].

Proof For convenience we return to the variable () (related in our case to
the variable qJ as follows: () = qJ + ()n -1) and prove an equivalent statement
that A2n(()) is a concave function of () on [()n-1' ()n]. We start by observing
that the function A~n«() coinciding with A2n «() for () E [()n- P ()n] is an even
trigonometric polynomial of degree ~2n. Let us denote this polynomial by
r 2n(() and consider its behaviour for 0 ~ () ~ n. It is clear from the definition
of the Lebesgue function that

= 1,

o~ k < n -1,

k = n - 1, n

n < k ~ 2n - 1.

(14)

Hence r 2n(() has at least (2n - 1) sign changes in (0, n). Thus its first
derivative r~n(e), being an odd trigonometric polynomial has not less than
(4n - 2) zeros in [0,2n). Further the second derivative r~n(e) also has at
least (4n - 2) zeros in [0,2n). On the other hand r~n«(J), as a trigonometric
polynomial of degree ~2n, has at most 4n zeros in [0,2n). Therefore,
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between any two successive extrema of r2n (O) there is exactly one sign
change of r;n(O). Hence, it suffices to verify that

r;n(On) < 0,

r;n(On_l) < 0,

(15)

(16)

in order to establish the concavity of A2n (O) on [On-I' On]'
To prove (15) we use the representation of the fundamental polynomials in

the following form [6):

e 2n
licos 0) =- piO) = ---'5.. I" cos(rOk ) • cos(rO),

n r=O
k = 0, 1,..., 2n, (17)

where 2::" denotes a sum whose first and last terms are halved, and

Thus,

= 1,

k = 0, 2n,

k = 1,2,... , (2n - 1).

One can easily check that P~_k(On)= P~+k(On)' k = 1,2,... , n, and since for
OE [On-l' On),

n

r;n(O) = p~(O) + I (-l)k-l[p~_iO) - P~+k(O»), (19)
k=l

we obtain

(20)

completing the proof of (15).
Verification of (16) is more complicated and based on two trigonometric

identities the proof of which is given in Lemmas 1 and 2 in the Appendix. It
follows from (17) that

640/42/3-7



288 L. BRUTMAN

"(B ) _ ,,( n n)Pk n-I -Pk 2- 2n

ek ~" 2 (nt) ( rn)=-- 2..., r cos(r8k)· COS - • COS -
n r~O 2 2n

- :k ~:' r2cos(r8k) • sin (r;) .sin ( ;: ) == ak+bk,

and in accordance with (19) we deduce

n

TZ'n(8n_ I )=a/l+ L (-l)k-l(a/l_ k -a/l+ k)+b"
k~1

"
+ L (-ll- l(b/l_ k - bn+k )·

k=1

(21 )

(22)

Now, since an+k = a/l_ k (k = 1,2,..., n), the first sum in (22) cancels, while
by applying Lemma 1 we derive

1 z" () ( )"22rn rn
an = - - L r COS - COS -

n r=O 2 2n

4 1n2

" (sn) l ( 1t )=-- -+ L. S2eos - . =2jsin 2 - .
n 2 s= I n 2n

(23)

Furthermore, one can easily verify that bn = 0 and b"+k = -b/l_ k

(k = 1,2,..., n). Hence

"
b/l+ L: (-l)k[b"_k- b"+k]

k~1

/I-I

= 2 I (_1)/1-1 +kb
k

k~O

= 2(-lt ±(-1)'+1(2s _ 1)2 sin [(2S -1)1t]
n s~1 2n

/1';::./, ()k [ k(2s - 1)n ]
X L..- -1 cos 2 '

k~O n
(24)

where 2:' denotes a surn whose first term is halved. Now, by employing the
identity

/I-I [k(2s-1)n] (_1)II+S [(2S-1)1tlL (_l)k cos 2 = 2 tan 4 '
k~O n n

(25)
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we obtain after some simplification

289

which implies, in view of Lemma 2,

Combining (22), (23), (24), and (27) yields

(28)

This completes the proof of the theorem.

We are now in a position to derive the following improvement of (4):

THEOREM 3. For any n = 1,2,... ,

with
n/8 2(/2 - 1)

(2n )2 <a2n < (2n)2

Proof It follows from (7) that

( n) 1 (n) 1
2n

-
1 [(2k-l)n]

F 2n 4n = 2n cot 4n + 2n {;1 l/sin 4n

1 2n . [(2k - l)n] 1 ( n)
=- ') l/sm --tan -

2n :-;:1 4n 2n 8n

__1 ~ [(2k-l)n] __1 (~)
- 2n /-;;'1 cot 8n 2n tan 8n .

On the other hand, it is known (see, e.g., [8]) that

1 2n [(2k-l)n]2n {;I cot 8n = IIP2n - I (T)11

and hence

(29)

(30)

(31 )
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Now by applying Theorem 2 we find

and in conjunction with Theorem 1 and (31) this leads to the estimate

IIP2n - I (T)II- 2
1ntan ( ;n )

< IIP2n(U)11 < IIP2n - I (T)11-12
1
n tan ( 871:n ) - 3~n tan ( :n) ~. (33)

It remains to note that for n = 1,2,... ,

8: < tan (8: )~ tan ( ; ) / n;

The theorem follows.

ApPENDIX

LEMMA 1.

tan (~) ~~.
4n n

(34)

n 2 (kn) n
2

'2(71:)L k cos - =---n/2sm -,
k=1 n 2 2n

n = 1,2,....

Proof We apply the well-known Abel transformation (see, e.g., [9, Vol.
I, p. 11]) and take into account that

stl cos(sa) = -++ sin [(2k; l)a J/2 sin ( ~) (35)

in order to obtain

n (k71: ) 1L k2 cos - =--(n 2 +1)
k=1 n 2

1 n-I • [(2k+l)71:]
- 2 . ( /2 ) L (2k + 1) sm 2 .sm 71: n k=1 n

(36)

Let Bn _ , = LI::: (2k + l)sin[(2k + 1) 71:/(2n)]. Applying the Abel
transformation again and using the trigonometric identity [4]

~ . [ (2s - 1)71: ] _ • 2 (~) /. (~)L. sm 2 - sm 2 sm 2
s=1 n n n

(37)
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we find

B I= -sin (3!..-.) + 2n - 1 _ . 2 nfl sin2 ( kn) .
n- 2n sin(nj2n) sm(nj2n) k=1 2n

Now, since L~:: sin2[knj2n] = (n - 1)j2 we deduce from (38) that

Bn _ 1 = -sin (2: ) +njsin ( 2: ).
Substitution of (39) in (36) yields the desired result.

LEMMA 2.

291

(38)

(39)

n . [(2S-1)n]L (2s - 1)2 sm 2
s-I 4n

_~ ( 2 _) n· cos(nj2n)
- n 4n 1 + . 2( j2 )6 sm n n

n = 1,2,....

Proof By the Abel transformation and the following easily verified
trigonometric identity

we derive

f sin2 [(2S - 1)n ] =.!5:- _ sin(knjn )
;";;;1 4n 2 4 sin(nj2n)

(40)

(42)

n [ (2 1)] 1 n - I
'\' (2s-1)2 sin2 s- n =-n(2n-1)2-4 L k2
s=1 4n 2 k=1

+ 2 L~:: k sin(knjn) (41)
sin(nj2n) .

The proof is now completed by using the well-known formula 6 L~= I k 2 =
n(n + 1)(2n + 1) together with the following identity (see, e.g., [4 j),

n:f k' (k)- sin(na) _ncos«2n-1)aj2)
k=1 sm a - 4sin2(aj2) 2sin(aj2)
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